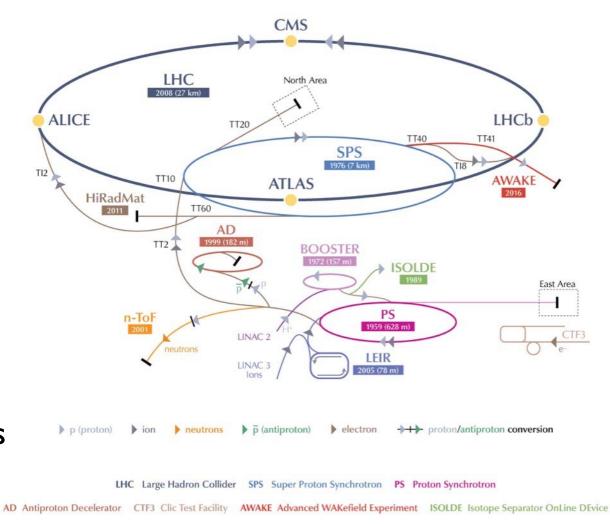
Engineering at CERN Ilias Efthymiopoulos

ATLAS

LHCb-

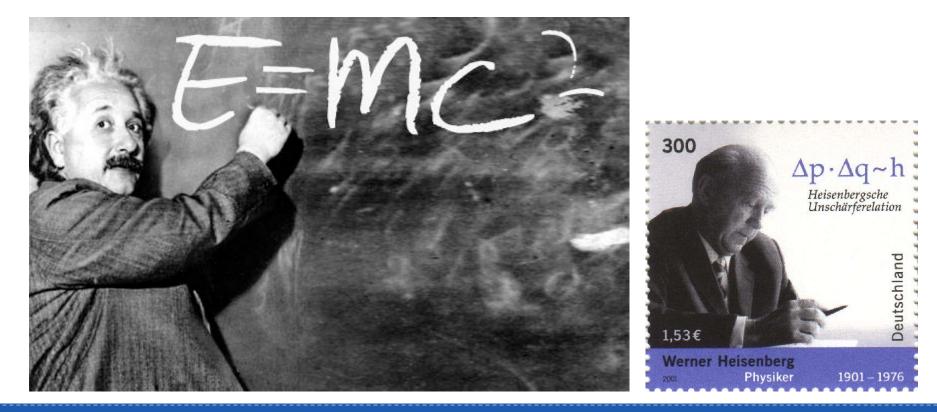

LHC 27 km

CERN Pr

Turkey Industry Event
 October 5th 2015

CERN's Accelerator Complex

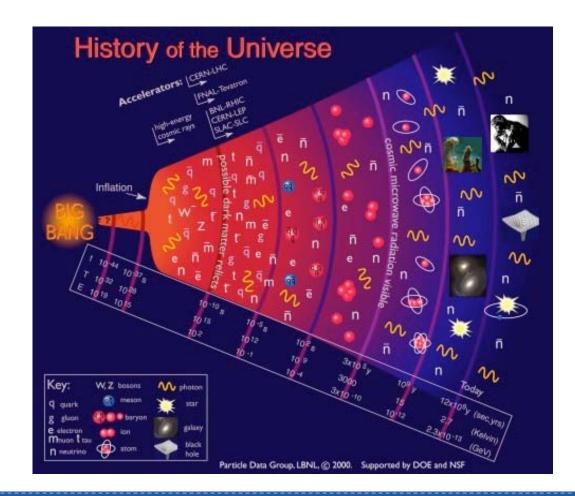
- 50 km of accelerators
- LHC : 27km, superconducting ring, 4 large experiments
- Injectors : normal conducting, 6 experimental areas and 2 irradiation facilities



LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

The Interest for Accelerators

Accelerators are often called "time machines" – why that?
My 3-slides introduction to High-Energy Physics

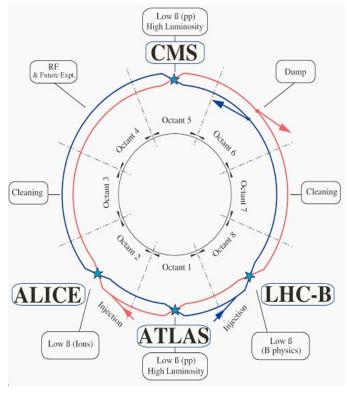


Ilias Efthymiopoulos

HEP - Basics Our model for the creation of the Universe

Big-bang : Initial Energy is converted to mass

 $E \Rightarrow Mass$

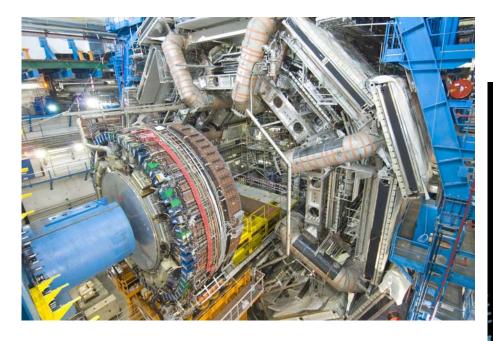


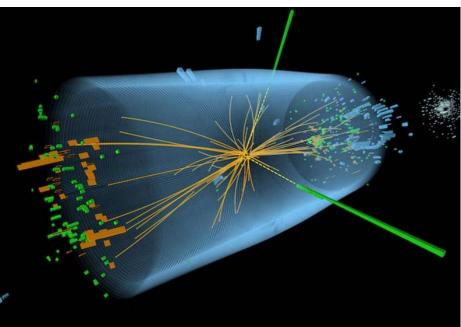
HEP - Basics

The role of accelerators

- Step I : start from known (massive)
 particles (M) protons, electrons
- Step II : accelerate them, give to each particle lot of energy, i.e. lot of energy in a small volume (proton size ~10⁻¹⁵ m)
- Step III : collide them, i.e. create
 instantaneous "pure" energy (E)
- Step IV : the available energy is converted back to mass (M) as during the big-bang
 - ▶ Higher the energy → heavier particles can be created, probe earlier in the Universe time scale

Constant need for more performant accelerators of higher energy and beam intensity




Ilias Efthymiopoulos

HEP - Basics

The Particle Detectors

 Step V : capture, identify and count the produced particles compare with theoretical models

Ilias Efthymiopoulos

The CERN Accelerators

- Large complex installations,
 - Mainly in underground tunnels (30-180m depth)
 - Or surface installations

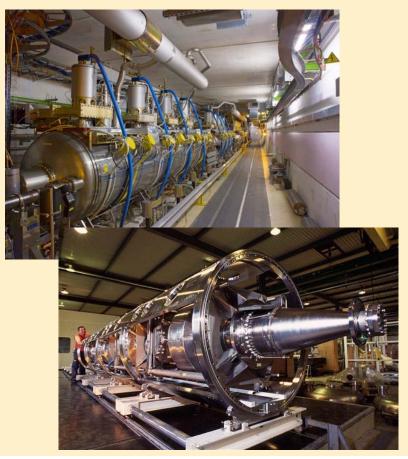
Ilias Efthymiopoulos

The CERN Accelerators

- Large complex installations,
 - surface or underground tunnels (30-180m depth)
 - equipment of leading-edge technology and engineering
 magnets, RF cavities, beam instrumentation



Ilias Efthymiopoulos


The CERN Accelerators • equipment of leading-edge technology and engineering

LHC Superconducting dipoles

- Maintained at 1.9k (-271.3 °C)
- ▶ 10⁻¹⁰ 10⁻¹¹ mbar vacuum for the beam

LHC Superconducting RF – 400 MHz

But also large installations of supporting infrastructure

 scaled-up versions of industrial solutions and applications

The CERN

LHC He cryogenics

Ex-LEP 4.5 K cold boxes

r bank for energy - PS POPS

or station and liquid

gen pre-cooler

llias Efthymiopoulos

llias Efthymiopoulos

The Accelerator Sector

Director of Accelerators

Beams Department

- Beam Design (accel. Physics)
- Beam Production (sources, linac)
- Beam Acceleration (radiofrequency – RF)
- Detection
- Controls
- Operation

Engineering Department

- Mech. Engineering
- El. Engineering
- Handling Engineering
- Cooling & Ventilation
- Industrial Controls
- Mater-beam interactions
- Beams & Experiments
- Project Engineering & Quality Assurance

Technology Department

Magnet technology

(warm & superconducting)

- Vacuum surfaces & coating
- Cryogenics
- Machine protection
- Beam Transfer

(injection, extraction)

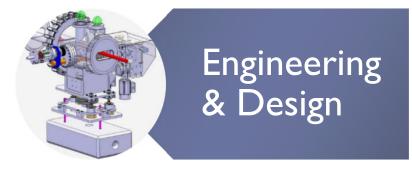
El. Power Converters

Ilias Efthymiopoulos

Equipment Lifecycle

Functional/Technical specifications Design, prototyping and testing Integration studies Collaboration with Universities, Laboratories and Ind ustry

Industrialization process Workshops at CERN, or outside, final assembly Procurement of raw material or components Technical Subcontracting for component production or full assemblies



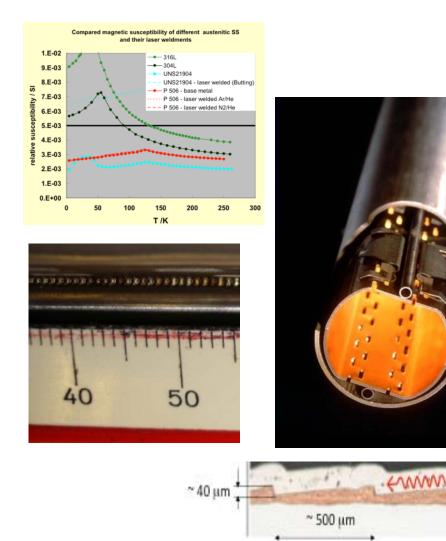
Installation, Operation Maintenance CERN core teams: technical services, handling Planning, Quality Assurance, Safety Technical Subcontracting for installation support and maintenance services

Ilias Efthymiopoulos

EN-MME Group

Mechanical & Materials Engineering

- Design Office:
 - 40 designers and engineers
 - CATIA / SmarTeam, ANSYS, LS-Dyna...
- Experimental Mechanics Lab.
- Mechanical workshop (4000 m²):
 - 50 technicians and engineers
 - CNC machining
 - Assembly & metal forming
 - Welding (TIG, MIG, electron beam, laser, vacuum brazing)
- Technical Subcontracting Service
- Material science consultancy:
 - metallurgical analyses, microscopy, mechanical tests
- NDT: US, radiography, tomography
- Metrology: 350 m² lab. equipped with CMM.



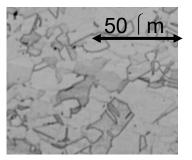
Ilias Efthymiopoulos

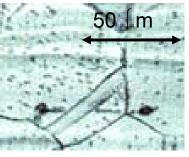
Materials &

Metrology

LHC Beam Screen and Cooling Capillaries - A concentrate of Technology Mechanical & Materials

Engineering

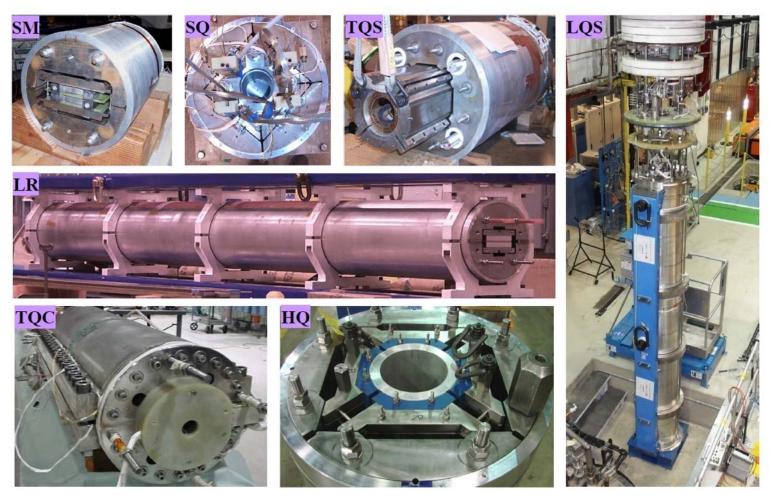

- Development of Materials and Manufacturing Solutions
 - Development of a new non-magnetic stainless steel with magnetic susceptibility £ 5×10⁻³ in weld and parent material at operating T (5 K to 20 K), readily weldable, not sensitive to hot cracking
 - Co-lamination of stainless steel with Cu, in order to avoid electroplating requiring a Ni strike increasing the magnetic susceptibility
 - Pumping slots with some randomness in the slot locations to limit resonances
 - Saw teeth in the arcs on Cu (40 mm height and 500 mm pitch) to reduce forward reflectivity against electron cloud build-up
 - Attachment of cooling tubes by millions of laser spot welds to be guaranteed leak tight


An innovative near net shaping technique for the end covers of the LHC dipole magnets Mechanical &

2500 stainless steel (316LN) covers

Powder Metallurgy

Forged


Materials Engineering

- Powder Metallurgy (PM) and Hot Isostatic Pressing (HIP)
 - First application of the technology on a broad scale to large size components for cryogenic use
 - Leak tight to gaseous He at 300 K under 2.6 MPa (test pressure)
 - Leak tight to superfluid He at 1.9 K under 0.13 MPa (operating pressure)
 - 25 thermal cycles 1.9 K Þ 300 K Þ 1.9 K (over 20 years)
 - Ductility to be guaranteed at low T (impact toughness I 20 J/cm2 at 4.2 K)
 - Compatible with its environment (wrought 316LN)
 - Fine microstructure, excellent dimensional stability
 - Cost effective compared to wrought (forged), cast, welded solutions

llias Efthymiopoulos

Superconducting Magnets

llias Efthymiopoulos

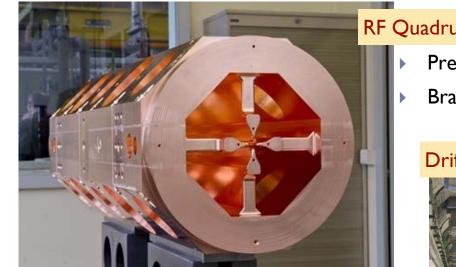
Superconducting RF cavities

Ilias Efthymiopoulos

Industry Event - Ankara, October 5th 2015

Mechanical &

Materials Engineering


• Warm RF cavities

Ilias Efthymiopoulos

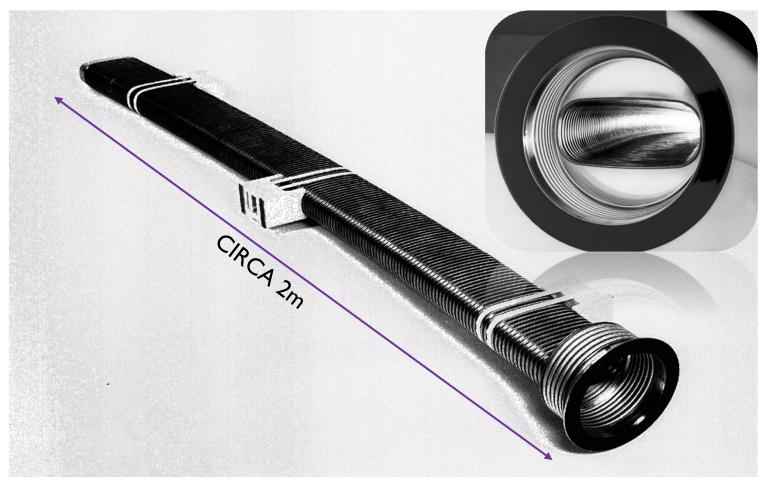
Beam line equipment

RF Quadrupole – LINAC4

- Precision machining (few μm)
- Brazing in vacuum, 1 m long pieces

llias Efthymiopoulos

Beam line equipment



Courtesy Alessandro Dallocio

Vacuum chambers

llias Efthymiopoulos

Subcontracting Service

What kind of skills we are looking for?

Machining	Welding/Brazing
High precision machining on large/very large components (Steel, Stainless steel, Al, Cu Alloys, Ti, W, Mo, Nb)	TIG/MIG Welding of stainless steel (316, 316L/LN, 304)
Ultra precise machining on small/medium size components (Stainless steel, Cu Alloys, Al,)	Welding of aluminium Welding of Cu/Brass and Cu Allloys Welding of Titanium
	Laser welding
Production and machining of ceramics and plastics (small, medium, large size)	Electron beam welding
EDM (wire erosion): all technologies providing precise tolerances and complex shapes.	Explosion bonding
	Soldering
	Vacuum brazing

- Subcontracting Service
 - What kind of skills we are looking for?

Various	Metal Forming	
Additive Manufacturing (especially with metals)	Forging: particularly customized forged pieces (Stainless steel 316LN, Cu alloys, Al alloys)	
There all the atmospheric company and the	Extrusion	
Thermal treatment (large components)	Casting (Iron and Aluminum)	
Surface treatments (cleaning, UHV cleaning, Ni coating, Si coating, Cu coating, anodization)		o Dallocio
	Punching, Fine Blanking, Deep Drawing	Alessandr
Die forming (casting)		
	Forging: particularly customized forged pieces (Stainless steel 316LN, Cu alloys, Al alloys)	Courtesy

Subcontracting Service

recent activities

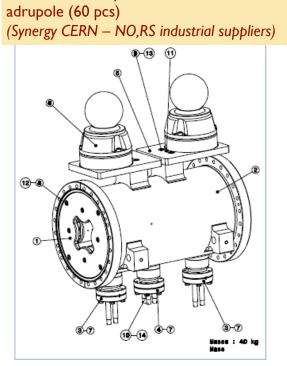
llias Efthymiopoulos

Industry Event - Ankara, October 5th 2015

Mechanical &

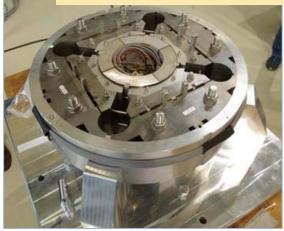
Materials Engineering

Subcontracting Service
 recent activities


Ilias Efthymiopoulos

Industry Event - Ankara, October 5th 2015

- Subcontracting Service
 - recent activities



LiU-PSB : First prototype of BHZ chambers fo r new PSB H- injection (CZ-CH suppliers)

ELENA – Series production of electrostatic qu

HL-LHC : new SQXF large apert ure quad, short prototype (RO-IT-FR-UK suppliers)

Ilias Efthymiopoulos

- Subcontracting Service
 - recent activities

FRESCA : magnet impregnation tool

Mechanical & Materials Engineering

llias Efthymiopoulos

Subcontracting service

• Recent activities

High-precision copper machining

Mechanical & Materials Engineering

Ilias Efthymiopoulos

- Subcontracting service
 - Recent activities

Beam instrument – high-percision mac hining of 316LN

Courtesy Alessandro Dallocio

- Subcontracting service
 - Recent activities

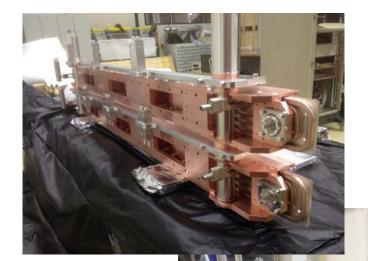
Ilias Efthymiopoulos

Subcontracting service

Recent activities

Lifting tool for magnets

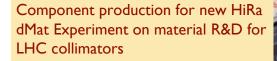
Ilias Efthymiopoulos


Industry Event - Ankara, October 5th 2015

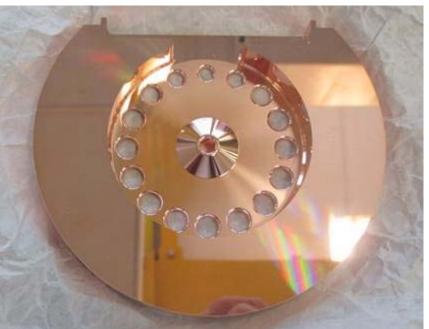
Mechanical &

Materials Engineering

Subcontracting service


Recent activities

Mechanical & Materials Engineering


Ilias Efthymiopoulos

- Subcontracting service
 - Recent activities

New undulated vacuum chambers

Mechanical & Materials Engineering

Ultra precise machining of RF cells for R&D on future Medical Accelerators

Ilias Efthymiopoulos

Subcontracting service

Recent activities

Mechanical & Materials Engineering

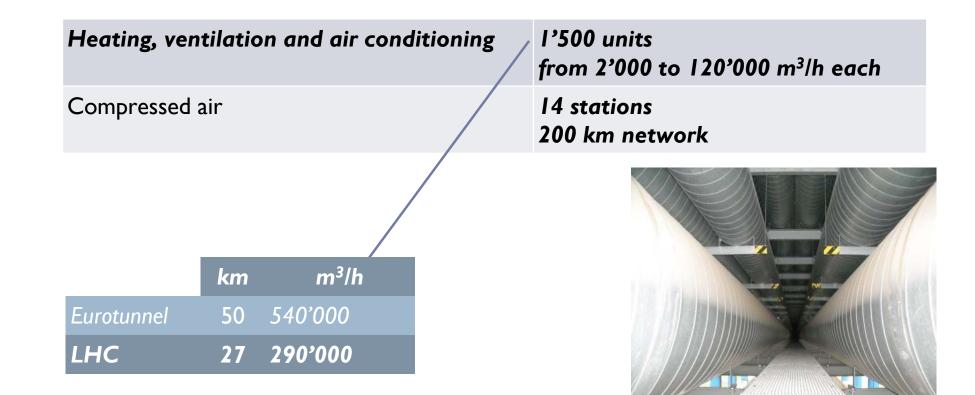
llias Efthymiopoulos

Ilias Efthymiopoulos

Ilias Efthymiopoulos

EN - CV Group Cooling & Ventilation Cooling systems, pumping stations, installations and fluid distribution systems for the CERN accelerators & experiments

Cooling plants (raw, demineralised water, C_3F_8 , C_6F_{14})	150
Pipelines	800 km
Hydrants	800 points
Cooling towers (450 MW)	22
Chilled water plants 6-12 °C (73 MW)	35
Water network with three pumping stations	5'400 m³/h


Water consumption equivalent to a city of 45'000 people 10% consumption of the Canton de Geneva

EN - CV Group

Ventilation

 Ventilation and air conditioning to accelerator installations (surface and underground), experimental areas

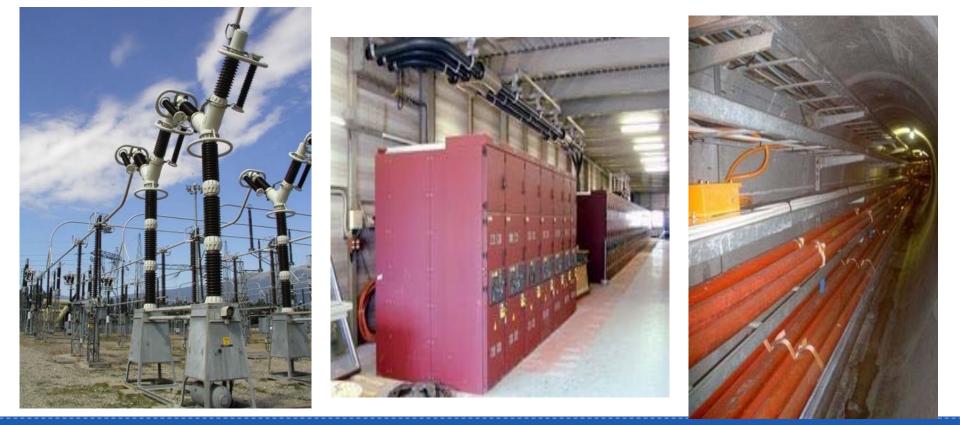
CERN

llias_REfteryngioppoulos

Industry Eventurkishkar, Anter Aler Star 20 5

EN - CV Group

Cooling & Ventilation



llias Efthymiopoulos

 EN - EL Group Electrical Engineering
 Operation, maintenance, extension, and renovation of the CERN electrical distribution network – optimize electrical energy consumption

llias_REfthymiopoulos

Industry Eventurkankar, Ankar, Ankar,

Electricity Distribution 400kV RTE Normal source EDF > 300 MW EHT1 EHT2 EHT3 EHT4 EHT5 90MVA 90MVA 90MVA 110MVA 110MVA \sim -------18kV 66kV Ð -M-Ξ В 2 g SPS NA Pulsed network SPS-NA EHT102 EHT102 EHT102 EHT102 EHT103 EHT7 38MVA 38MVA BE9 38MVA 38MVA 38MVA 70MVA BE9 10MVA HMO Machine Netork LHC MP2 - 3 WH SPS NA EHT102 General services network LHC1 WA SPS-NA-Prevessin 70MVA ₹ Annual Consumption 1.26 TWh ME59 SEM12 ╢ Ē $\frac{1}{6}$ of Geneva General services LHC Network LHC ME9 Autotransfert Instantaneous Power 180 MW ഥ 53 PS ISOLDE Admin. $\frac{1}{2}$ - $\frac{1}{3}$ of Geneva Machine Network General Services network Meyrin Meyrin ME10 EHT611 EHT612 EHT613 60MVA 30MVA 60MA Emergency source SIG/ALPIQ \leq 60 MW 130kV SIG

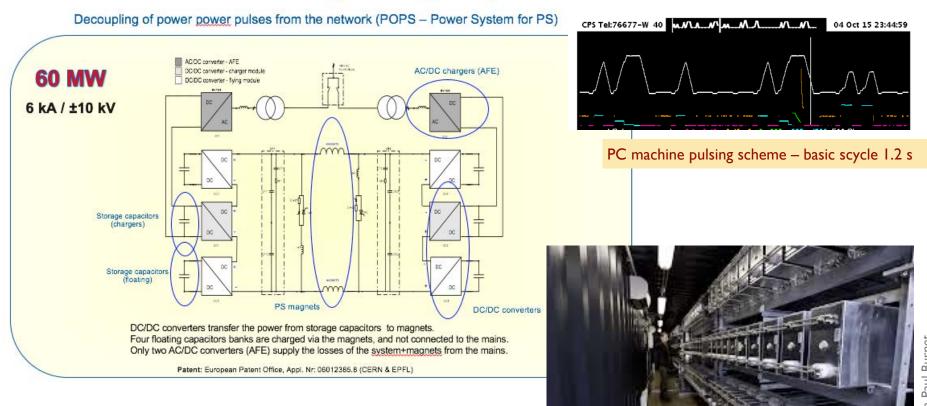
llias_REfthyngioppoulos

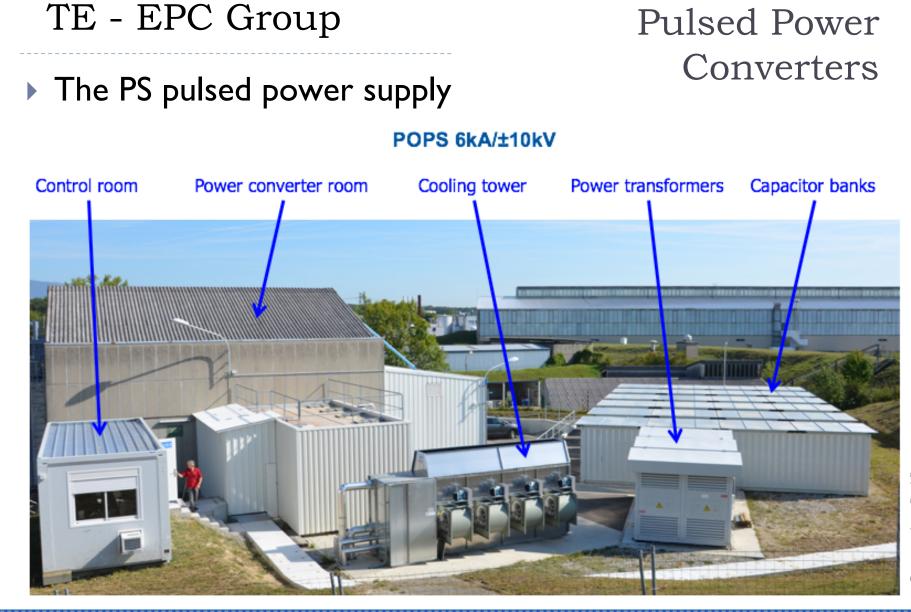
Industry Eventurkankar, Sctoper Sth 2015

TE - EPC Group

Power Converters

- Power supplies for the accelerator magnets and equipment
 - Transform the AC mains power into adequate conditioned power to the load
 - Key challenges: stored energy, current stability, synchronization




TE - EPC Group

Power converter with integrated energy storage

Pulsed Power Converters

Courtesy Jean-Paul Burnet

Ilias Efthymiopoulos

EN - MEF Group

Transport & Handling

- Manage the complete logistic of transport and handling activities at CERN
 - Development, purchase, operation and maintenance of all transport & handling machines and tools – industrial and custom built

Industry Eventurk Ankar, Ast to Age Star 2015

EN - MEF Group

Transport & Handling

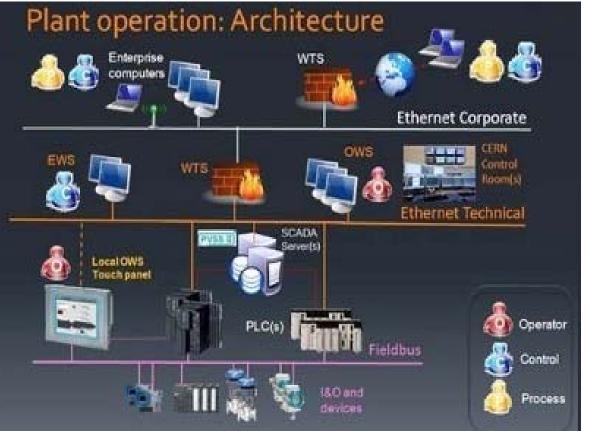
Industrial vehicles

- 30 elevators (diesel) +150 electrical elevators
- I 00 platforms
- I000 manual handling machines
- 60 trucks for special transport
- 180 electrical trolleys

TOTAL : 1500 machines (Value 25 M€)

llias_REfthymiopoulos

Industry Eventurkankar, Anter Star 2015



EN – ICE Group

Industrial Controls

 Large and medium scale industrial control systems deployed throughout CERN

- Particular challenges
 - Computer safety
 - Radiation to electronics
 - Uptime/Availabil ity

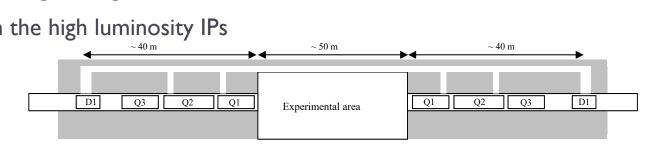
llias_REfthyngioppoulos

Industry Eventurkankar, Ankar, Astropher Sthr 2015

Fiducialisation

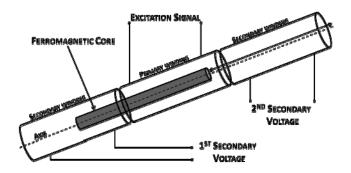
2000 cryomagnets

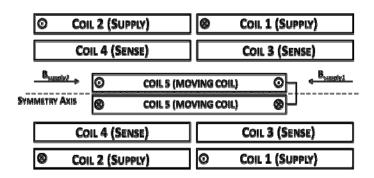
- Inner triplets LHC
 - 0.1 mm in all directions
 - Permanent monitoring through water level and wires
 - Survey galleries in the high luminosity IPs
 - Motorized jacks


Alignment of the LHC components in the tunnel

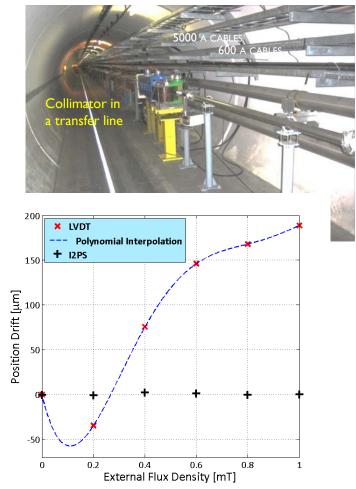
Survey & Alignment

- Absolute precision
- 0.15 mm Relative precision over 150 m
- 4000 components


4 mm

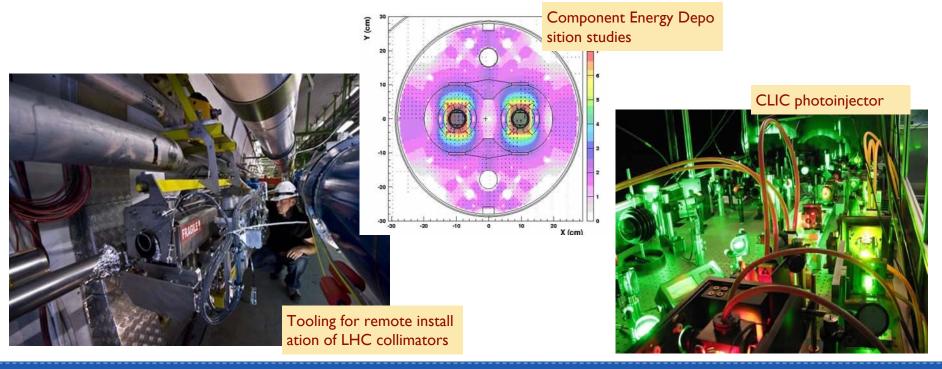


Special Instrumentation


Rad-hard Magnetic Field immune positioning sensors

Linear Variable Differential Transformer

Ironless Inductive Position Sensor



Industry Eventurkankar, Ankar, Astrophysics

EN – STI Group Beam Interactions Studies & know-how on energy deposition, radiation effects to electronics

Development of radioactive beam sources @ ISOLDE,
 CLIC photoinjector, plasma and polarized e⁺e⁻ sources

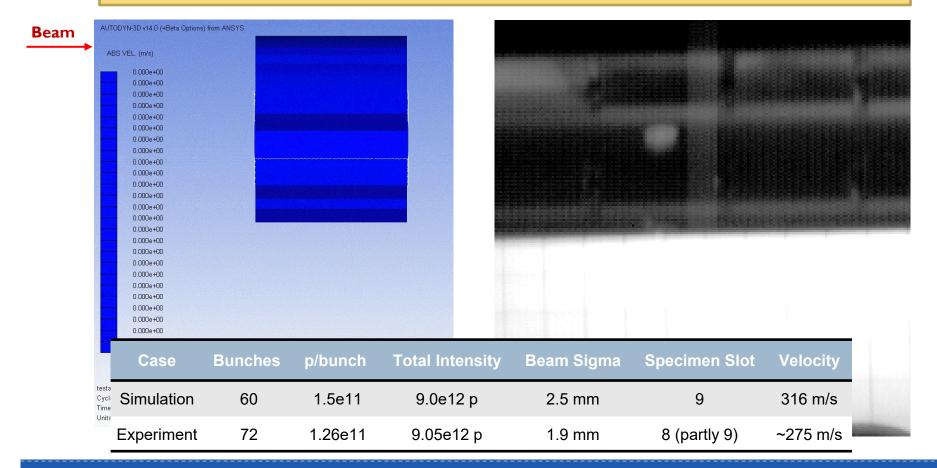
llias_REftpyngioppoulos

Industry Eventur Ankar, Asicto Age Stur 2015

Accelerator R&D Facilities

HiRadMat – High Radiation to Materials

 Provide high-energy (440 GeV), high-intensity (up to 3.4 MJ) pulsed beams to an irradiation area where samples of materials or component assemblies can be tested

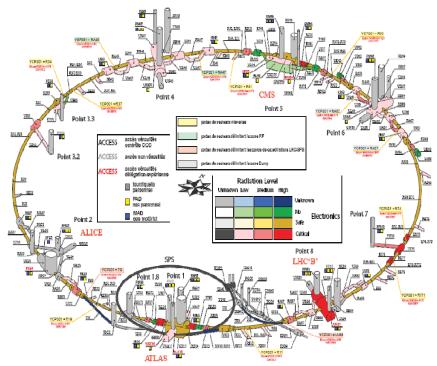


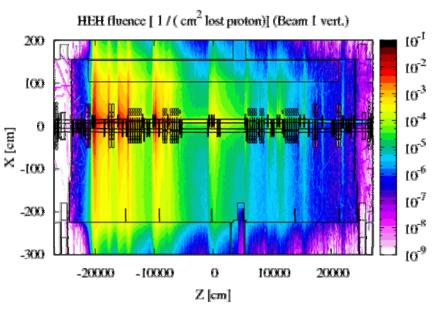
llias Efthymiopoulos

HiRadMatAccelerator R&DFacilities

R&D on Novel composite Materials

Inermet : comparison between simulation and experiment



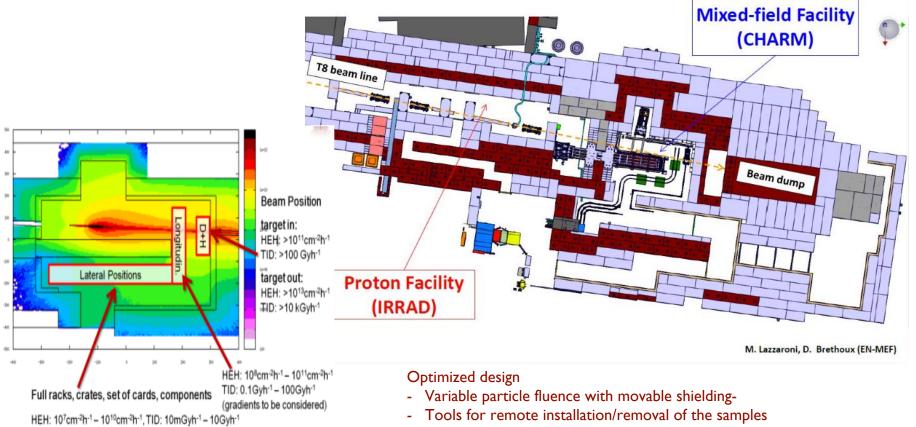


EN – STI Group

Radiation to Electronics

- R2E project : Study the impact of radiation effects on installed electronics in the CERN accelerators
 - Understand the environment and generated effects
 - Equipment inventory and risk analysis/prioritization
 - Implement mitigation options (shielding, relocation)

Particle fluence map from simulation (FLUKA) – good agreement with measurements within 20%


llias_REfthyngioppoulos

Industry Eventurkankara, Sittat 2015

EN – STI/MEF Group

• CHARM Facility @ PS

- Proton and neutron irradiation area
- Designed to irradiate detector and accelerator equipment electronics

Ilias Efthymiopoulos

Industry Event - Ankara, October 5th 2015

Accelerator R&D

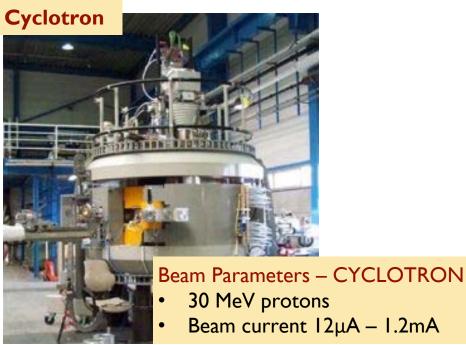
Facilities

Planning & Quality Assurance

- Planning and coordination of interventions
 - Maintenance, Upgrades, Modifications
- Layout Database, Documentation, Specifications

Industry Eventurkishkar, Ankar, Ankar

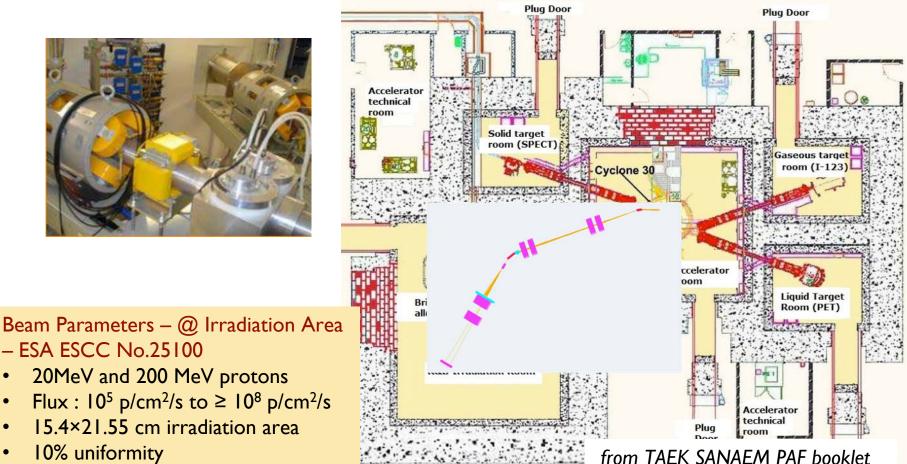
- CERN with its large accelerator complex is a unique place where physicists, engineers and industrial partners can work together and produce leading edge results
 - Keep in mind the interplay between high-tech and standard, industrial applications & needs
- It is hard in a single presentation to cover the full spectrum of engineering activities in the Organization.
- I tried to give you a flavor of our activities, in areas that could stimulate the interest for collaboration



CERN – METU Collaboration Prof. B.Demirkoz

Development of a defocusing beam line at the TEAK SANAEM Proton Accelerator Facility @ Ankara

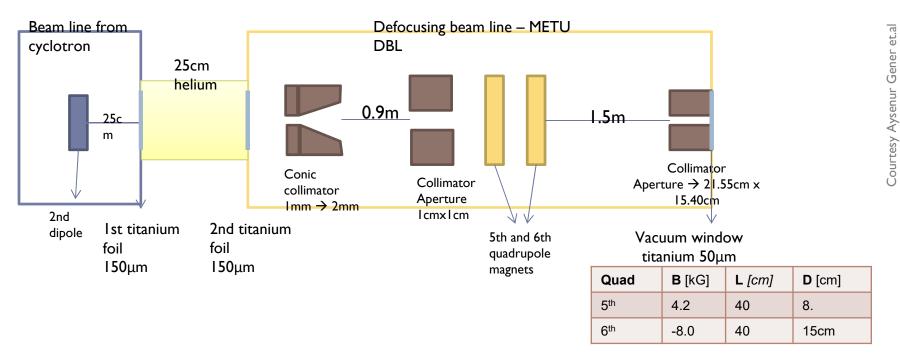
 Irradiation area for testing electronics components for space and other applications



Ilias Efthymiopoulos

CERN – METU Collaboration TAEK SANAEM Proton Hizlandirici Tesisi

Radiation shielding wa


from TAEK SANAEM PAF booklet

•

CERN – METU Collaboration

Beam layout and instrumentation

- Small scale project that nevertheless requires developing skills found in large accelerators
 - Beam design, Magnet design and construction, beam vacuum, windows, instrumentation, test station with movement possibility of samples

An excellent opportunity for collaboration and technology transfer from CERN to Turkish Industry

Ilias Efthymiopou

THANK YOU!